Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(43): 98076-98090, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37603243

RESUMO

Ruthenium is a robust catalyst for a variety of applications in environmental heterogeneous catalysis. The catalytic performance of Ru/TiO2 materials, synthesized by using the deposition precipitation with urea method, was assessed in the catalytic oxidation of C3H8, varying the ruthenium loading. The highest catalytic reactivity was obtained for a Ru loading of 2 wt. % in comparison with the 1, 1.5, 3, and 4 wt. % Ru catalysts. The physicochemical properties of the synthesized materials were investigated by XRD, N2 adsorption, TEM, FT-IR pyridine, H2-TPR, and XPS. The size of ruthenium particles was found to be greatly dependent on the pretreatment gas (air or hydrogen) and the catalytic activity was enhanced by the small-size ruthenium metal nanoparticles, leading to changes in the reduction degree of ruthenium, which also increased the Brönsted and Lewis acidity. Metal to support charge transfer enhanced the reactant adsorption sites while oxygen vacancies on the interface enabled the dissociation of O2 molecules as revealed through DFT calculations. The outstanding catalytic activity of the 2Ru/TiO2 catalysts allowed to convert C3H8 into CO2 at reaction temperatures of about 100 °C. This high activity may be attributed to the metal/support interaction between Ru and TiO2, which promoted the reducibility of Ti4+/Ti3+ and Ru4+/Ru0 species, and to the fast migration of TiO2 lattice oxygen in the catalyst. Furthermore, the Ru/TiO2 catalyst exhibited high stability and reusability for 30 h under reaction conditions, using a GHSV of 45,000 h-1. The underlying alkane-metal interactions were explored theoretically in order to explain the C-H bond activation in propane by the catalyst.


Assuntos
Nanoestruturas , Rutênio , Propano , Espectroscopia de Infravermelho com Transformada de Fourier , Catálise , Oxigênio
3.
Sci Total Environ ; 900: 165886, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37524191

RESUMO

This study tracked five pharmaceutically active compounds (PhACs) in Mexico City's sewage, namely, famotidine, indomethacin, dexamethasone, azithromycin, and ivermectin, which were used to treat COVID-19. The monitoring campaign was carried out over 30 months (May 2020 to November 2022), covering the five COVID-19 waves in Mexico. In the Central Emitter, the main sewage outflow, famotidine displayed levels of 132.57 ± 28.16 ng L-1 (range from < LOQ to 189.1 ng L-1), followed by indomethacin (average 672.46 ± 116.4 ng L-1, range from 516.7 to 945.2 ng L-1), dexamethasone (average 610.4 ± 225.7 ng L-1, range from 233.4 to 1044.5 ng L-1), azithromycin (average 4436.2 ± 903.6 ng L-1, range from 2873.7 to 5819.6 ng L-1), and ivermectin (average 3413.3 ± 1244.6 ng L-1, range from 1219.8 to 4622.4 ng L-1). The concentrations of dexamethasone, azithromycin and ivermectin were higher in sewage from a temporary COVID-19 care unit, by a factor of 3.48, 3.52 and 2.55, respectively, compared with those found in municipal wastewater. In the effluent of the Atotonilco Wastewater Treatment Plant (AWWTP), which treats near 60 % of the Mexico City's sewage, famotidine was absent, while concentrations of indomethacin, dexamethasone, azithromycin and ivermectin were 78.2 %, 76.7 %, 74.4 %, and 88.1 % lower than those in the influent, respectively. The occurrence of PhACs in treated and untreated wastewater resulted in medium to high environmental risk since Mexico City's wastewater is reused for irrigation in the Mezquital Valley. There, PhACs were found in irrigation canals at lower levels than those observed in Mexico City throughout the monitoring. On the other hand, famotidine, indomethacin, and dexamethasone were not found in surface water resulting from the infiltration of wastewater through soil in Mezquital Valley, while azithromycin and ivermectin sporadically appeared in surface water samples collected through 2021. Using an optimized risk assessment based on a semi-probabilistic approach, the PhACs were prioritized as ivermectin > azithromycin > dexamethasone > famotidine > indomethacin.


Assuntos
COVID-19 , Poluentes Químicos da Água , Humanos , Águas Residuárias , Esgotos , Vigilância Epidemiológica Baseada em Águas Residuárias , Monitoramento Ambiental , México/epidemiologia , Azitromicina , Famotidina , Ivermectina , Pandemias , Poluentes Químicos da Água/análise , COVID-19/epidemiologia , Medição de Risco , Preparações Farmacêuticas , Dexametasona
4.
Environ Technol ; : 1-11, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36222246

RESUMO

In this work, fern-leaf-like BiVO4 was used to photocatalytically reduce Cr6+ in water. Nanosized BiVO4 displayed bandgap energy and specific surface area of 2.49 eV and 5.65 m2 g-1, respectively. Metallic Au nanoparticles were deposited on the BiVO4 to increase the photocatalytic performance. To optimize the reaction conditions, the sacrificial agents methanol, ethanol, formic acid, dimethyl sulfoxide, and KI were tested, while different catalyst dosages and Au loadings were assessed. The best sacrificial agent was formic acid, which was used at an optimal concentration of 0.01 mol L-1. The complete removal of Cr6+ was attained after 90 min of visible light irradiation using a catalyst dosage of 1.5 g L-1. Depositing metallic Au nanoparticles barely improved the photocatalytic performance, thus unmodified BiVO4 was used to remove Cr6+ in tap water. The matrix effect slowed the photocatalytic process, and the complete removal of Cr6+ was achieved in 120 min. Cr3+ and Cr6+ species were precipitated on the catalyst surface at the end of the photocatalytic process; still, BiVO4 displayed high stability after three reaction cycles.

5.
Environ Sci Pollut Res Int ; 29(51): 76992-77006, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35675006

RESUMO

The present work highlights the versatility of a TiO2-Al2O3 mixed oxide bearing highly dispersed gold nanoparticles that was applied in the CO oxidation reaction at room temperature. The TiO2, Al2O3, and TiO2-Al2O3 supports were synthesized by the sol-gel method, while gold nanoparticles were added by the deposition-precipitation with urea method using a theoretical Au loading of 2 wt.%. A promotional effect of the TiO2-Al2O3 support on the activity of gold catalysts with respect to TiO2 and Al2O3 was observed; Au/TiO2-Al2O3 showed outstanding CO oxidation, being active from 0 °C and stable throughout a 24-h test. As for the alumina content (5, 10, and 15 wt.%) in TiO2, it improved the textural properties by retarding the crystal growth and anatase-rutile phase transformation of TiO2, suppressing the deposition of carbon on the catalyst surface and stabilizing the Au nanoparticles even at high temperatures. Gold was highly dispersed with nanoparticle sizes ranging from 1 to 2 nm when H2 was used to treat thermally the Au/TiO2-Al2O3, Au/TiO2, and Au/Al2O3 materials. In addition, the XPS technique helped elicit that Au0 and Au1+ boosted their interaction with the TiO2, Al2O3, and TiO2-Al2O3 supports by means of charge transfer, which resulted in outstanding CO oxidation activity from 0 °C. Likewise, the key factors that control the peculiar catalytic performance in the CO oxidation reaction are discussed, which represents a step forward in the versatility behavior of gold catalysts supported on mixed oxide catalysts.

6.
ACS Omega ; 6(36): 23170-23180, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34549118

RESUMO

A density functional theory + U systematic theoretical study was performed on the geometry, electronic structure, and energies of properties relevant for the chemical reactivity of TiO2 anatase. The effects of D3(BJ) dispersion correction and the Hubbard U value over the energies corresponding to the TiO2/Ti2O3 reduction reaction, the oxygen vacancy formation, and transition-metal doping were analyzed to attain an accurate and well-balanced description of these properties. It is suggested to fit the Hubbard correction for the metal dopant atom by taking as reference the observed low spin-high spin (HS) energy difference for the metal atom. PBEsol-D3 calculations revealed a distinct electronic ground state for the yttrium-doped TiO2 anatase surface depending upon the type of doping and interstitial or substitutional defects. Based on the calculations, it was found that a HS state explains the observed ferromagnetism in cobalt-substituted TiO2 anatase. The results presented herein might be relevant for further catalytic studies on TiO2 anatase using a large surface model that would be worthwhile for heterogeneous catalysis simulations.

7.
Environ Sci Pollut Res Int ; 28(9): 10734-10748, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33099755

RESUMO

Low-temperature CO oxidation was carried out by using rhodium incorporated into titanate nanotubes (Rh/NTs) prepared by the sol-gel and hydrothermal methods; otherwise, gold nanoparticles were deposited homogeneously onto the Rh/NT surface through the deposition-precipitation with urea (DPU) method. The Au-Rh/NT sample exhibited high metal dispersion (55%), outstanding CO oxidation at low temperature, and better resistance to deactivation than the monometallic Rh/NT and Au/NT samples. The characterization of bimetallic samples, with particle sizes from 1 to 3 nm, revealed the remarkable presence of interacting Au and Rh species in metallic state. In this way, Au0 and Rh0 were answerable for the higher catalytic activity observed in the bimetallic samples. The interaction between Au and Rh in the nanoparticles of Au-Rh/NT promoted a synergistic effect on the CO oxidation reaction, explained by the creation of new CO adsorption sites.


Assuntos
Nanopartículas Metálicas , Nanotubos , Ródio , Catálise , Ouro , Propriedades de Superfície , Temperatura
8.
Environ Sci Pollut Res Int ; 27(23): 28623-28635, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32304046

RESUMO

In this study, the magnetic fraction (MF) of a low-grade titanium ore (TO) was successfully used as an alternative Fe2+ source in five reuse cycles, in combination with persulfate (PS) and simulated sunlight (SSL) for the degradation of ciprofloxacin (CIP). The best response of the CIP initial concentration, irradiation time, and doses of MF and PS to degrade completely this pollutant were determined based on an experimental design. However, the individual application of MF, PS, or SSL fails to achieve this goal at the optimal experimental condition. Furthermore, the MF-PS-SSL system showed a higher production of sulfate radicals and a concentration of dissolved Fe2+ ions compared with data obtained for the MF-PS system. The best performance attained by the former system is due to the synergy produced between the photo-generated electrons, and the reaction of PS with the Fe2+ ions leached gradually from the MF, which increased sulfate radical production. After five reuse cycles of the MF, the oxidation system showed a CIP degradation of 100% in 100 min, no residual content of PS, a CIP mineralization of 6%, a marginal increase in the biodegradability (BOD5/COD ratio), a MF loss of 7.5%, and a twofold increase in toxicity; however, this parameter was lower than the effective concentration at 50% inhibition (EC50). The substitution of MF with an iron salt decreased the degradation efficiency of the antibiotic by 14%, probably owing to the immediate excess of Fe2+ in the solution, which can be oxidized to Fe3+ ions, and as a consequence of this, the production rate of the sulfate radical was also reduced.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água/análise , Oxirredução , Sulfatos , Luz Solar , Titânio
9.
Environ Sci Pollut Res Int ; 27(13): 15475-15487, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32077020

RESUMO

In this work, the synthesis of catalyst with perovskite structure and chemical formula La1-XCeXMnO3 at x = 0 - 0.5 were successfully obtained by an ultrasonic-assisted hydrothermal method. Results show that the addition of Ce in La1-XCeXMnO3 have not substantial effect in textural and morphological properties; however, the formation of a new crystalline phase with final composition CeOX-La1-XCeXMnO3 was detected at values x > 0.3. All synthesized catalysts were tested in the soot oxidation under both, loose and tight contact in 20% O2/N2 or 5% O2/N2 atmospheres. CeOX-La1-XCeXMnO3 at x = 0.3 resulted in the best catalytic activity with activation energy values of 57.9 kJ.mol-1. The interaction between Ce3+ and Mn4+ species in this catalyst can transfer electrons generating Mn3+ and Ce4+. This reduction from Mn4+ to Mn3+ is accompanied by migration of vacancies to the surface promoting the adsorbed oxygen from the gas phase, need for balancing the chemical states. By increasing the temperature above 300 °C, the bulk oxygen migration to the surface is enhanced being the responsible for the oxygen availability. The formation of CeOX-La1-XCeXMnO3 promotes a stable redox cycle allowing the reusability of this catalyst even at low oxygen pressures after three different reaction cycles.


Assuntos
Fuligem , Ultrassom , Catálise , Oxirredução , Oxigênio
10.
J Vis Exp ; (145)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30985750

RESUMO

Bismuth oxyhalide (BiOI) is a promising material for sunlight-driven-environmental photocatalysis. Given that the physical structure of this kind of materials is highly related to its photocatalytic performance, it is necessary to standardize the synthetic methods in order to obtain the most functional architectures and, thus, the highest photocatalytic efficiency. Here, we report a reliable route to obtain BiOI microspheres via the solvothermal process, using Bi(NO3)3 and potassium iodide (KI) as precursors, and ethylene glycol as a template. The synthesis is standardized in a 150 mL autoclave, at 126 °C for 18 h. This results in 2-3 µm-sized mesoporous microspheres, with a relevant specific surface area (61.3 m2/g). Shortening the reaction times in the synthesis results in amorphous structures, while higher temperatures lead to a slight increase in the porosity of the microspheres, with no effect in the photocatalytic performance. The materials are photo-active under UV-A/visible light irradiation for the degradation of the antibiotic ciprofloxacin in water. This method has demonstrated to be effective in interlaboratory tests, obtaining similar BiOI microspheres in Mexican and Chilean research groups.


Assuntos
Bismuto/química , Microesferas , Água/química , Catálise
11.
Environ Technol ; 39(18): 2353-2364, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28697649

RESUMO

Mono- (Au, Ag and Cu) and bi-metallic (Au-Ag and Au-Cu) nanoparticles were deposited on TiO2 and tested for the photocatalytic degradation of sulfamethoxazole using either UV-C or simulated sunlight. The optimal loading of metallic nanoparticles was determined as 1.5 wt% for Au and Ag, and 1.0 wt% for Cu. In the case of bi-metallic nanoparticles, only the ratio 1:0.5 wt% for both Au-Ag and Au-Cu was tested. In experiments using UV-C light, the highest degradation performance was found for Ag/TiO2, while bi-metallic nanoparticles supported on TiO2 also showed increased photocatalytic activity compared with unmodified TiO2. In simulated sunlight irradiation tests, Au/TiO2 showed to be the most efficient material. Complete mineralization of sulfamethoxazole was achieved when surface-modified materials were tested in both UV-C and simulated sunlight experiments. Photolysis was efficient to fully degrade sulfamethoxazole, although mineralization was lower than 10% for both luminic sources. The main by-products of sulfamethoxazole were determined in photolysis and photocatalysis tests using UV-C light, and degradation paths were proposed. By-products showed non-toxicity and low antibiotic activity. Reuse of the catalysts upon three reaction cycles did not result in the loss of activity.


Assuntos
Nanopartículas Metálicas , Fotólise , Sulfametoxazol/química , Catálise , Titânio
12.
Langmuir ; 33(36): 8924-8932, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28810122

RESUMO

Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on CrVI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.

13.
Chemosphere ; 184: 992-1002, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28658742

RESUMO

Cu-TiO2 photocatalysts were prepared by the sol-gel method. Copper loadings from, 1.0 to 5.0 wt % were used. The materials were annealed at different temperatures (from 400 to 600 °C) to study the formation of brookite and copper ionic species. The photocatalysts were characterized by X-ray diffraction, UV-vis, Raman and XPS spectroscopies, H2-temperature programmed reduction (TPR), N2 physisorption, and SEM-EDS to quantify the actual copper loadings and characterize morphology. The photocatalysts were evaluated during the hydrogen photocatalytic production using an ethanolic solution (50% v/v) under UV and visible radiation. The best hydrogen production was performed by Ti-Cu 1.0 with an overall hydrogen production that was five times higher than that obtained with photolysis. This sample had an optimal thermal treatment at 500 °C, and at this temperature, the Cu2O and brookite/anatase ratio boosted the photocatalytic production of hydrogen. In addition, a deactivation test was carried out for the most active sample (TiO2-Cu 1.0), showing unchanged H2 production for three cycles with negligible Cu lixiviation. The activity of hydrogen-through-copper production reported in this research work is comparable with the one featured by noble metals and that reported in the literature for doped TiO2 materials.


Assuntos
Cobre/química , Hidrogênio/química , Modelos Químicos , Processos Fotoquímicos , Fotólise , Titânio/química , Catálise , Luz , Temperatura , Difração de Raios X
14.
Molecules ; 21(4): 532, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27110757

RESUMO

The nature and size of the real active species of nanoparticulated metal supported catalysts is still an unresolved question. The technique of choice to measure particle sizes at the nanoscale, HRTEM, has a practical limit of 1 nm. This work is aimed to identify the catalytic role of subnanometer species and methods to detect and characterize them. In this frame, we investigated the sensitivity to redox pretreatments of Ag/Fe/TiO2, Ag/Mg/TiO2 and Ag/Ce/TiO2 catalysts in CO oxidation. The joint application of HRTEM, SR-XRD, DRS, XPS, EXAFS and XANES methods indicated that most of the silver in all samples is in the form of Ag species with size <1 nm. The differences in catalytic properties and sensitivity to pretreatments, observed for the studied Ag catalysts, could not be explained taking into account only the Ag particles whose size distribution is measured by HRTEM, but may be explained by the presence of the subnanometer Ag species, undetectable by HRTEM, and their interaction with supports. This result highlights their role as active species and the need to take them into account to understand integrally the catalysis by supported nanometals.


Assuntos
Monóxido de Carbono/química , Oxirredução , Prata/química , Catálise , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Propriedades de Superfície
15.
J Nanosci Nanotechnol ; 15(9): 7002-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26716274

RESUMO

Au-Cu catalysts supported on anatase or rutile phases were prepared by deposition-precipitation method. The titania polymorph used as the support determined the catalytic behavior. For the Au-Cu/rutile catalysts, the metallic phase had smaller dimensions than for the Au-Cu/anatase catalysts. The catalysts supported on anatase, however, were more active and stable than those supported on rutile. A systematic study of the catalytic activity for CO oxidation as a function of the temperature of activation and the aging time was performed. The catalytic properties were correlated with the properties of the catalysts analyzed with X-ray powder diffraction, refinement of the crystalline structures with the Rietveld method, and transmission electron microscopy. When the support was anatase, a pretreatment at 400 degrees C in air led to the most active catalysts, whereas when the support was rutile, a pretreatment between 200 and 300 degrees C in air led to the most active catalysts; activation under hydrogen generated less active catalysts. The Au-Cu catalysts activated in air were more active for the oxidation of CO than the respective monometallic gold catalysts, indicating a promoting effect between gold and copper to catalyze this reaction.

16.
Nano Lett ; 15(12): 8141-7, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26495764

RESUMO

It has been a long-lived research topic in the field of heterogeneous catalysts to find a way of stabilizing supported gold catalyst against sintering. Herein, we report highly stable AuIr bimetallic nanoparticles on TiO2 synthesized by sequential deposition-precipitation. To reveal the physical origin of the high stability of AuIr/TiO2, we used aberration-corrected scanning transmission electron microscopy (STEM), STEM-tomography, and density functional theory (DFT) calculations. Three-dimensional structures of AuIr/TiO2 obtained by STEM-tomography indicate that AuIr nanoparticles on TiO2 have intrinsically lower free energy and less driving force for sintering than Au nanoparticles. DFT calculations on segregation behavior of AuIr slabs on TiO2 showed that the presence of Ir near the TiO2 surface increases the adhesion energy of the bimetallic slabs to the TiO2 and the attractive interactions between Ir and TiO2 lead to higher stability of AuIr nanoparticles as compared to Au nanoparticles.

17.
Phys Chem Chem Phys ; 17(42): 28022-32, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25785784

RESUMO

Iridium was added to the Au/TiO2 system to try to enhance its catalytic activity in the reaction of propene oxidation, performed under conditions close to those used in the studies of decomposition of volatile organic compounds (1200 ppm propene and 9 vol% O2 in He). Titania supported Ir-Au (Ir/Au = 1) was prepared by sequential deposition-precipitation with urea (DPU) of Ir then Au. The effect of the activation conditions (hydrogen or air at 400 °C) was investigated. The study of the activation conditions of Ir-Au/TiO2 showed that activation under hydrogen at 400 °C generated a catalyst more active than the monometallic ones, while Ir-Au/TiO2 activated in air remained as poorly active as Au/TiO2. TEM characterization showed the formation of metallic particles of similar size (2-3 nm) in both monometallic Au/TiO2 and bimetallic Ir-Au/TiO2. Characterization especially by DRIFTS using CO as a probe molecule suggests the presence of Ir-Au interaction, IrO2-Au(0) interaction when the sample is calcined and Ir(0)-Au(0) bimetallic particles when it is reduced. XPS and TPR characterization techniques showed that gold hinders to some extent the reoxidation of iridium in the reduced bimetallic Ir-Au/TiO2 catalyst. The enhanced catalytic activity of the reduced bimetallic Ir-Au/TiO2 catalyst is attributed to a surface Ir(0)-Au(0) synergism.

18.
J Hazard Mater ; 263 Pt 1: 28-35, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23664919

RESUMO

The effect of Au, Ag, Cu and Ni nanoparticles deposited on TiO2-P25 was studied on the photodegradation of trimethoprim, a commonly used antibiotic. The synthesized materials were characterized by ICP, EDS, XRD, BET, UV-vis, TEM and TPR. The metal loading was 0.5 wt.% and the average particle size was about 2 nm in all the studied samples. The deposition of metallic particles on TiO2-P25 produces an enhancement of the activity of the bare semiconductor; when the degradation of trimethoprim was carried out by pure TiO2-P25, the mineralization reached only 50% of the organic matter, while by using metallic nanoparticles deposited on TiO2-P25, the mineralization of organic matter increased up to 80% for the same reaction conditions and reaction time. The evaluation of the photocatalytic activity was made for solutions containing trimethoprim in concentrations of 40 ppm under UV light irradiation using a lamp with primary emission at 254 nm and 2.2 mW/cm(2). It is shown that the ability of the photocatalyst to mineralize trimethoprim depends on the electron affinity and the electronegativity of the deposited metal.


Assuntos
Anti-Infecciosos/química , Nanopartículas Metálicas/efeitos da radiação , Metais Pesados/química , Titânio/efeitos da radiação , Trimetoprima/química , Poluentes Químicos da Água/química , Catálise , Nanopartículas Metálicas/química , Fotólise , Titânio/química , Raios Ultravioleta , Purificação da Água/métodos
19.
J Hazard Mater ; 263 Pt 1: 2-10, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23608749

RESUMO

Gold nanoparticles deposited on TiO2 Degussa P25, prepared by deposition-precipitation with urea, were studied in the photocatalytic hydrogen production. The effect of parameters such as mass of catalyst, gold loading, thermal treatment, and atmosphere of treatment was evaluated and optimized. The presence of metallic gold on the titania surface showed to have contributed to the high improvement in the activity of bare TiO2 for hydrogen generation under UV light (λ=254 nm) using a lamp of low energy (2W) consumption. The optimal gold loading for the photocatalysts was 0.5 wt.%, the mass of catalyst in the reactor was 0.5 g/L in a water/methanol 1:1 vol. solution, and the thermal treatment that produced the most active gold nanoparticles was found at 300°C. The photocatalysts thermally treated under hydrogen at 300°C produced 1492 µmol g(-1)h(-1) of hydrogen; the same catalyst activated in air produced 1866 µmo lg(-1)h(-1) of hydrogen.


Assuntos
Ouro/efeitos da radiação , Hidrogênio/química , Nanopartículas Metálicas/efeitos da radiação , Metanol/química , Titânio/efeitos da radiação , Água/química , Ouro/química , Nanopartículas Metálicas/química , Processos Fotoquímicos , Titânio/química , Raios Ultravioleta , Ureia/química
20.
J Nanosci Nanotechnol ; 8(8): 3843-50, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19049139

RESUMO

Gold nanoparticles supported on TiO2 and Al2O3 were prepared by using the deposition-precipitation with urea (DP Urea) method. The control of the particle size was achieved by varying both, the stirring time during the deposition-precipitation (DP) procedure and the conditions of thermal treatment. We focused mainly on the stirring time and the treatment temperature, although gas flow and type of atmosphere also influence importantly the particle's size and shape, as we shall show. The optical response of metallic nanoparticles is given by its surface plasmon resonance and its position and shape depends strongly on the size and the shape of the nanoparticle, as well as on its surrounding. Then, we followed the control of the nanoparticles size by using mainly optical absorption measurements, which gave us account of the size and the shape of the nanoparticles and the effect of the support on their optical response. These optical results were compared to, and supported with, TEM micrographs of our samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...